
Theoret. chim. Acta (Ber].) 5, 289--304 (1966) 

On the Solution of the Quantum Mechanical Two-Electron Problem 
by Direct Calculation of the Natural 0rbitals 

I I I .  Re f ined  T r e a t m e n t  of the t I e l i n m - A t o m  a n d  t h e  H e l i u m - l i k e  I o n s  

R.  AI-ILRICHS, W.  KUTZELNIGG a n d  W.  A. BINGEL 

Lehrstuhl  fiir Theoretische Chemic der Universiti i t  G6ttingen 

Received April t9,  t966 

Natura l  orbitals (NO) and natura l  expansion coefficients for the ground states of the He 
atoms and some isoeleetronic ions are calculated directly as numerical  self-consistent solutions 
of integro-diffcrential equations derived previously. These new applications differ from pre- 
vious ones insofar as larger and more flexible sets as one-electron functions are used and as 
certain simplifications are no longer made. The wave functions and energies obtained here 
compete with the best configuration interaction results known so far and are obtained in an 
easier and more straightforward way. Plots of the NO's show dear ly  t h a t  different NO's of the 
same state are localized in the same region of space. Special a t ten t ion  is given to the  problem 
of the eonvergeney of the na tura l  expansion and to the role of the correlation potential ,  which 
is defined as the  difference between the effective one-electron t tamil tonians  for the 1 ~t (strongly 
occupied) NO and the Hartree-Fock (HF) orbital  respectively. I f  one takes this correlation 
potent ial  into account using an i terative procedure one can obtain bet ter  approximations to 
the first NO than  the  HF-orbitals  are. I f  one is only interested in the energy it  is - -  except for 
the  H-- ion  - -  irrelevant whether  or not  one ignores the  difference between the t ~t NO and the  
I-IF-orbital. 

Natfirliehe Orbitale (NO) und  Koeffizienten der nati ir l iehen Entwieklung fiir den Grund- 
zustand des He-Atoms nnd  einiger isoelektronischer Ionen werden direkt bereehnet  als nume- 
rische, selbstkonsistente L6sungen yon friiher abgeleiteten Integro-Differentialgleiehungen. 
Diese neuen Reehnungen unterseheiden sich yon friiheren zum gleichen Problem dadureh, 
dab grSgere und  flexiblere Basiss~tze yon Einelektronenfunkt ionen verwendet  werden und 
dab gewisse Vereinfachungen der Gleichungssysteme nieht  mehr  gemacht  werden. Die bier 
erhal tenen Wellenfunktionen und  Energien k6nnen mi t  den besten bisher bekannten  Ergeb- 
nissen yon Konfigurationsweehselwirkungs-Ansgtzen wetteifern, sic sind dabei in einer ein- 
facheren und  systematischeren Weise zu erhalten. Graphisehe Darstel lungen der Radialfak- 
torch der NO zeigen deutlich, dag verschiedene NO's zum gleiehen Zustand im gleichen r~um- 
lichen Bereieh lokalisiert sind. Besondere Beaehtung finden das Problem der Konvergenz der 
nati ir l ichen Entwicklung sowie die Rolle des Korrelationspotentials,  das als Differenz zwi- 
schen den effektiven Einelektronen-Hamilton-Operatoren ffir das erste (stark besetzte) NO 
und fiir das Hartree-Fock (HF-) Orbital  definiert ist. Tri/gt man diesem Korrelat ionspotential  
in einer i terat iven Weise Rechnung,  so gelingt es, eine bessere Ngherung fiir das erste NO zu 
erhal ten als sie das entspreehende I tF-Orbi ta l  darstellt .  Sofern man  sich nur  fiir die Energie 
interessiert, so ist es - -  auger fiir das H - - I o n  - -  unwesentlieh, ob man die Verschiedenheit 
zwisehen erstem NO und I-IF-Orbital beriicksichtigt oder nieht.  

Les orbitales naturelles (NO) et les coefficients du dev61oppement naturel  des 6tats fonda- 
mentaux  de l 'a tome He et de quelques ions iso616etroniques sont caleul6s directement comme 
solutions numSriques self-eonsistantes d 'un  system, deriv& ant6rieurement,  d'&quations 
integro-differentielles. Ces ealeuls nouveaux different des pr6cgdents par  le fair qu 'on se serf 
main tenan t  de bases plus larges et plus flexibles de fonetions mono61~ctroniques. E n  plus 
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certaines simplifications ne sont plus faites. Les fonetions d'onde et les 6nergies obtenues iei 
sont comparables aux meilleurs resultats de ealeuls d'interaction de configurations connus 
jusqu'iei. Elles sont pourt~nt obtenues d'une f~eon plus simple et plus syst6matique. Les 
dessins des faeteurs radiaux des NO demontrent que les NO appartenant au m6me gtat sont 
localis~s dans la mgme r~gion de l'espace. On s'int~resse en partieulier au probl~me de la con- 
vergenee du dev61oppment naturel et au potentiel de eorr61ation qui est d6fini eomme la 
difference des operateurs effeetifs mono616etronique pour la premigre NO (la NO fortement 
oecup6e) e~ pour l'orbitale l-[artree-Foek (HF). Si l'on tient compte de Be poten~iel de eorrdla- 
tion par un proc6d6 i~eratif on rgussit g obtenir des meilleures approximations pour la premiere 
NO que celle fournie par l'orbitale HF. Pourvu qu'on ne s'intgresse qu'g l'dnergie, il est - -  
saul pour l'ion I~- - -  sans importance si l'on utilize l'orbitale HF ou une meilleure approxima- 
tion pour la premiere NO. 

1. Introduction 

I n  the first paper of  this series [11], here referred to as I, integro-differential 
equat ions have been derived which allow one to calculate the natural  orbit~ls of  
a two-electron-system without  prior knowledge of the tota l  wave function. They 
have to be t reated separately for (i) closed-shell type  ground states, (ii) excited 
singlet states of a symmet ry  species different from tha t  of  the ground state, and 
(iii) lowest triplet states. The equations valid for ground states have been applied 
numerically to the He isoelectronie series in the second paper of  this series [19], 
here referred to  as I I .  Certain simplifications of the ra ther  involved equations were 
necessary to make a numerical solution possible. 

Wi th  the approximate natural  orbitals thus obtained configuration interact ion 
calculations were performed which, by  virtue of  the  properties of natural  orbitals, 
led to secular equations of quite small dimensions. The wave functions and energies 
thus  obtained fulfil the variat ion principle, i.e. energies are upper bounds to the 
true ones and the goodness of the energy is a measure of the goodness of the 
wave function. 

Since our previous calculations had to be done on the rather  small IBlV[ 1620 
computer ,  it seemed worthwhile to repeat and refine them using the IBIV[ 7040 
available in G6ttingen. 

The refinements consisted in using larger and more flexible basis sets in terms 
of which the natural  orbitals are expanded, and in relaxing some of the simplifica- 
tions introduced previously. 

Special a t tent ion was given to the following point :  The "strongly occupied." 
natural  orbitals - -  which are known to be almost identical with the t Ia r t ree-Foek  
orbitals [18] (at least for the two-electron systems considered here) should be 
computed  f rom an effective one-electron equat ion which differs :from the usual 
Har t ree-Fock equations in the appearance of a (non-local) correlation potential.  
The latter depends on the "weakly occupied" natural  orbitals, art iterative proce- 
dure hence recommends itself. I n  I I  we had ignored the correlation potential  and 
with it the difference between t Iar t ree-Foek orbitals and the "s t rongly occupied" 
na tura l  orbitals. 

The specification "refined" in Shis title should not  be unders tood in the sense 
tha t  we wanted to  compete with other highly accurate t rea tments  of the Helium- 
a tom [9, 22, 28]. These calculations on the Helium ground state are not  an end 
in itself, but  t hey  should be regarded as one step fur ther  towards  a better  under- 
s tanding of more complicated systems. 
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2. The computational scheme 

The following sets of equations derived in part I are used to calculate the 
approximate NO's 

(H + J~ q- C) Z~ = ]~11 Zl (l) 

Qi [ni (H -~ K i) @ K 1] Qi Zi = l i i  Zi; i #  I (2) 

n~ - Ei - / ~  (3) 

Here Z1 is the "strongly occupied" (spinfree) natural orbital, Z/a "weakly occupied" 
one, Qi the projection operator projecting onto the subspace complementary to the 
one spanned by the first (i -- 1) natural orbitals. H is the one-electron part of the  
Kamilton-operator, j /  and Kf are coulomb and exchange operators produced 
from an electron pair in orbital Zi. (1~ ]/d) is an exchange integral involving 
orbitals Z1 and Ze' C is the "correlation potential", which will be discussed in 
section 4. For the detailed definitions of these quantities the reader is referred to I. 

The equations are solved algebraically, each NO being regarded as a linear 
combination of given orthonormal one-electron functions. We start from Slater- 
type-orbitals with appropriately chosen orbital exponents and construct ortho- 
normal orbitals out of them by a symmetrical orthonormalisation procedure. 
Those orbitals corresponding to an eigenvalue of the overlap matrix less a given 
threshold value (in general _< t0 a) are omitted, in order to avoid difficulties due 
to approximate linear dependencies [21]. The basis integrMs and the Hartree-Fock 
calculations are performed in double precision arithmetic. 

Contrary to what had been done in I I  the (small) operators K~ in (2) are no 
longer neglected. 

In  the first "macro-iteration" cycle the correlation potential C is ignored. The 
solution of (1) and (2) necessitate "micro-iteration" cycles; especially for the 
solution of (2) one starts by putting ni = 0; having got a first approximation Z~ 
one computes n~ from (3) and so forth. Self-consistency is reached, in general 
after 3 or 4 iterations. 

The coefficients c/in the natural expansion of the spinfree wave function 

9(1, 2) = ~ c~ z~(t) z~(2) (4) 
i 

are obtained finally from the secular equation 

2c~ H .  + ~ ce (i/c I ki) =/~ c/�9 (5) 
k 

The lowest value for # is then an upper bound to the total energy of the ground 
state. 

3. Discussion of the results 

We limit ourselves in this section to a discussion of the results obtained with 
one single macro-iteration cycle. 

Tab. t gives the best total energy for the Helium ground state obtained in this 
scheme together with the coefficients of the natural expansiort eq. (4) of the 

1 
corresponding wave function. Like in I I  the a i [  = (2 /+  1) g "cd are coefficients of 
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Table 1. Energy and natural expansion coe]]icients a~ /or the best calculation o] the He ground state 

- E 2,90322 

t~ -.99622 3d 0.01219 5g 0.00194 
2s 0.06003 4d 0.00330 6g 0.00076 
3s 0.00681 5d 0.00104 
4s 0.00144 6d 0.00033 6h 0.00098 

7h O.OO025 
2p 0.06005 4] 0.00426 
3p 0.00956 5] 0.00143 
4p 0.00232 6] 0.00047 
5p 0.00070 

7i 0.00050 

a NO-configuration, ra ther  t h a n  of a simple NO-product.  (The expansion coef- 
ficients of the NO's in  terms of the basis Slater-type-orbitals are not  t abu la ted ,  
bu t  can be furnished on request.) The energy obtained here is identical  with,  or 

even slightly bet ter  t h a n  the best configuration interact ion result known so far 
[33]. Our scheme is, however, simpler and  more straightforward t h a n  the conven-  

Table 2. Energies (compared to values ]rom the literature) and natural expansion coe]]ieients 
]or the ground state o/ He and the He-like ions 

Z t 2 3 4 6 

- E  (exacQ [22, 25, 28] 0.52775 2 .90372 7.27991 13.65557 
- E  (best CI) [33] 0.52751 2.90320 7 .27924 13.65481 
- E  (this work) 0.52679 2 .90317 7.27911 t3.65464 

- E  (previous NO) [12] 0.5245 2.902t 7.2777 t3.6532 

-Eraa [5] 0.51449 2 .87902 7.25249 t3.62686 
-Erda (this work) 0.51131 2 .87878  7.25231 t3.62669 

32.40625 
32.40540 
32.40501 
32.4034 

32.37629 
32.37631 

-Em~[24] 0.48793 2 .86168 7.23641 13.6t330 32.36119 

- a l  Is -.97562 -.99622 -.99848 -.99918 -.99965 
2s 0A8603 0 .06001 0 .03582  0 .02553  0.01620 
3s 0.01423 0.00684 0.00435 0 .00321 0.00208 
4s 0.00312 0.00126 0.00104 0 .00077  0.00049 

2p 0.11250 0 .06008 0.04003 0 .02993  0.01988 
3p 0.01509 0 .00956 0.00654 0.00436 0.00328 
4p 0.00383 0 .00231 0.00149 0.00115 0.00076 
5p 0.00089 0.00069 0.00028 0 .00031  0.00012 

3d 0.01894 0.01222 0.00857 0.00656 0.00442 
4d 0.00507 0.00328 0.00228 0.00174 0.00115 
5d 0.00169 0.00104 0.00070 0.00048 0.00032 
6d 0.00068 0 .00033 0.00015 0.000t0 

4] 0.00640 0 .00428 0.00305 0 .00235  0.00154 
5] 0.00228 0.00144 0 .00101 0.00076 0.00044 
6] 0.00090 0.00047 0.00022 0.00018 

5g 0.00291 0.00196 0.00134 0.00t04 0.00061 
6g 0.00122 0 .00077 0 .00046  0.00023 0.00015 
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t iona l  CI method ,  especial ly since the  crucial quest ion which configurat ion to  
choose does not  arise here. The pa r t i cu la r  choice of the  basis of  S la te r - type-  
orb i ta l s  (in pa r t i cu la r  the  orbi ta l  exponents)  is not  crucial  a t  all, so t h a t  for  a 
series of  calculat ions of the  Hel ium-l ike- ions  jus t  one basis set was guessed  for 
each sys tem and  no ref inement  b y  var ia t ion  of  the  basis set was t r ied.  

These resul ts  are collected in  Tab.  2. As to  He the essential  difference be tween  
the  resul ts  in Tab.  i and  Tab.  2 is the  omission of na tu r a l  orbi ta ls  wi th  l > 4 in 
the  la t ter .  Aga in  the  results  in Tab.  2 are ve ry  close to  the  bes t  CI resul ts  k n o w n  

Table 3. Contributions o/the NO.con/igurations to correlation energy o] the ground states o] I-Ie 
and He-like ions 

Z 1 2 3 4 6 

2s .02037 .01534 .01445 .01408 .01376 
3s .00083 .00088 .00088 .00088 .00087 
4s .00010 .00010 .00009 .00009 .00010 

2p .01408 .01945 .02093 .02162 .02229 
3p .00113 .00179 .00195 .00203 .00210 
4p .00019 .00027 .00029 .00030 .00030 

3d .00126 .00215 .00245 .00260 .00275 
4d .00026 .00042 .00047 .00050 .00050 
5d .00006 .00010 .00010 .00011 .00010 

4/ .00028 .00050 .00058 .00062 .00066 
5/ .00009 .00014 .00016 .000i6 .00015 

5g .00009 .00017 .00019 .00021 .00021 

- Ecorr ~ .03886 .04149 .04270 .04334 .04381 
-Er b .03982 .04210 .0435 .0443 .0451 

c 97.7 98.6 98.2 97.7 97.2 

Sum of the contributions. 
b Exact values. 
o Percentage of the exact correlation energy accounted for. 

so far. Note that we obtained these energy values by a final CI calculation involving 
only 17 configurations, whereas a conventional CI calculation using the same one- 
electron basis would involve 88 configurations. I t  is in teres t ing  to  compare  t he  
" rad ia l  l imi t s"  ob ta ined  in this  scheme with  the  ve ry  accurate  ones b y  DAvis  [5]. 
The agreement  between the  two sets increases wi th  increasing nuclear  charge - -  
as one would expect .  (The higher  Z the more does the  first order  dens i ty  m a t r i x  
approach  i dempo teney  and the  more  r ap id  ought  to  be the  CI expansion).  This  
resul t  seems to be in cont rad ic t ion  with  the  diminishing accuracy  of  the  t o t a l  
energy for increasing Z, as also has  been observed in convent ional  CI calculat ions 
[33]. 

One under s t ands  this  d i screpancy  be t t e r  i f  one cons ders the  cont r ibut ions  of 
the  different  NO-configurat ions  to  the  correlat ion energy in Tab.  3. The definit ion 
of  these cont r ibu t ions  is the  same as in  I I .  

20* 
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AEi = (2l § l) ~ (ii  l i~) = ~21 + ~  a~ ( i i [  i~).  (6) 

One sees that energy contributions of N0-configurations with large / increase 
with increasing Z, and so does the error due to truncation of the expansion at a 
fixed value of l. 

The remaining error of ~ to 3% in the correlation energy (i, 2% for the best 
He-calculation) is probably due to neglect of N0 ' s  with 1 >_ 5. Addition of just a 
few/-values would, however, not improve the energy in an appreciable way as one 
can see by extrapolation. This observation agrees with those of other authors 
[25, 33] and comes probably [16, 27] from the fact that  the wave-function for the 
He ground state has a correlation cusp, as a consequence of which the wave- 
function should have the following form for small rl~: 

~o(r 1, r2, r12 ) = ~o0(r 1, r2) (i § �89 r12 ) § . . .  (7) 

Any CI-wave-function can, of course, be transformed to a Legendre expansion: 

~fl(rl, r2, v~12) = ~flo (rl, r2) -~ ~ ~~ (rl, r2) Pk  (cos v~12) (8) 
k=l  

or alternatively to 

2k ?(rl, r2, r12) ~f0 (rl, r2) ~- ~ ~ (rl, r2) rl~ (9) 
~k=l 

2 2 2 
since cos @12 = rJ2--r~--r2 and Pk (cos ~1~) is a polynomieal in cvs ~12 and hence 

2fir 2 
also in r~2. 

An expansion of ~v in terms of even powers of r~ multiplied by appropriate 
functions of r 1 and r 2 is convergent in the sense of the mean square approximation, 
it cannot be uniformly convergent [16]. I t  is evident, that  the rather important  
term linear in r12 will need a very big number of even powers in r~2 (or polynomieals 
in cos ~1~) to be well approximated in the mean. 

~ Pk (cos ~lS) + + cos 
~'12 k=O 

/c=O 

Although the cusp itself (i.e. the discontinuity of the first derivative of ~v with 
respect to r12 at rl~ = 0) has no direct influence on the energy [6], it is nevertheless 
responsible for the eventually slow convergency of the CI expansion [10, 27]. A 
very similar problem occurs, if one wants to expand the wave function of H + in 
terms of Slater-type-orbitals centered at the midpoint [1, 7, 8]. Again orbitals 
with very high l give non-neglegible contributions and the expansion is slowly 
convergent. This seems to be a very general result oeeuring whenever one wants to 
approximate a function with a cusp as a linear combination of functions whose 
first derivatives are continuous everywhere. I t  has been made plausible for these 
two types of expansions that  the energy contributions from orbitals with high 1 
should be proportional to l -a [8, 27] or (l + 1)_4 [16]. We have therefore collected 
in Tab. 4 the energy contributions E(l) of NO's with given 1 together with E(1). 
(l -? �89 which ought to be constant for constant Z. I t  should be noted that  our 
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Table 4. Contributions to the energy E(1) o] NO's with a given l, together with (I + �89 E( l )  

Z-> t 2 3 4 6 

E(I) .01540 .02151 .02317 .02395 .02469 
(~)4 E(t) .07796 .10889 Ai730 A2t25 A2499 

E(2) .00158 .00267 .00302 .00321 .00335 
(~)~ E(2) .06172 A0430 .11797 A2539 .13086 

E(3) .00037 .00064 .00074 .00078 .00081 
(~)~ E(3) .05552 .09604 All05 .11705 A2155 

E(4) .00009 .00017 .00019 .00021 .00021 
(~)aE(4) .03691 .06971 .07791 .08611 .086il 

E(4), i.e. the  con t r ibu t ion  of  g- type NO's ,  is p r o b a b l y  too small,  since we used 
only 2 g- type basis functions.  

The even tua l ly  slow convergency of the  NO-expans ion  (like t h a t  of a n y  CI- 
expans ion)  should not  obscure the  fact  t h a t  in order  to  get  ve ry  good r a the r  t h a n  
ex t r eme ly  precise energies one needs ve ry  few configurations. This can be seen 
from Tab.  5, where the  energy values 
ca lcula ted  b y  configurat ion in te rac t ion  
with  l ,  2 . . . .  6 na tu ra l  configurations 
are t a b u l a t e d ,  toge ther  wi th  the  corres- 
ponding  values  t a k e n  from DAVIDSON [4]~ 
who used app rox ima t ive  NO' s  ob ta ined  
ind i rec t ly  from a K inosh i t a - type  wave  
funct ion.  

W i t h  4 configurations one obta ins  mo- 
re t h a n  90% and  wi th  6 configurations 
more  t h a n  95 % of  the  correla t ion energy. 
This is of prac t ica l  impor tance  for more  
compl ica ted  systems.  The big advan tage  
of the  present  scheme is, t h a t  i t  can 
r a the r  easi ly be general ized to  systems 
with  more t h a n  two electrons,  whereas 
those methods  involving direct  r12-de- 
pendence of the  wave funct ion,  which are 

Table 5. He-ground state energies cal- 
culated with minimum numbers o/ 

~O-eon/igurations 

n -E~ - E  b l v 

t 2.861653 2.86168 0 
2 2.882049 2.88223 1 48.8 
3 2.897434 2.89764 0 85.5 
4 2.899243 2.89948 2 92.5 
5 2.900903 2.90098 1 93.5 
6 2.901697 2.90170 0 95.2 

n: I~umber of configurations. 
l: Angu]ar momentum quantum num- 

ber of the last added NO 
v: Percentage of the exact corre- 

lation energy taken into account. 
Values from DAVIDSON [6]. 

b This work. 

super ior  for 2-electron sys tems will p r o b a b l y  resist  genera l isa t ion to  big sys tems 
for qui te  some t ime.  Al though  an accuracy  of abou t  0.0005 a.u. (~-~ 0.0i  eV 

100 cm -1 N 0.3 keal) m a y  seem d isappoin t ing  for He l ium - -  for which more 
accura te  calculat ions are avai lable  - -  one should not  forget  t h a t  the  most  re l iable  
values for the  Be-ground-s ta te  [32, 33] - -  as ob ta ined  from calculat ions  sa t i s fy ing 
the  va r i a t ion  principles - -  are abou t  0.005 a.u. in error  which is nea r ly  i0  t imes  as 
much. 

The r ad ia l  factors  of  the  app rox ima te  NO' s  of  the  He l ium ground s ta te  are 
p lo t t ed  in  Fig.  L Al though,  as has been s t a t ed  in  I ,  the  accuracy  of  these NO' s  
should decrease wi th  decreasing cont r ibu t ion  to  the  energy e x p e c t a t i o n  value  and  
hence roughly  wi th  the i r  occupat ion  number ,  these plots  are qu i te  i l lus t ra t ive .  
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Fig. 1 Radial factors ]n~ (r) of the most important NO's of the He-ground state�9 

Table 6. J~xpectation values o/one-electron operators r~ with respect to di//erent NO-con]igurations 
(Yor ~o)  

- 1  9. 2 3 ~ - 1  l 2 3 

ta  1,687 0.927 1.185 1.940 3d 1.152 0.998 t.130 
2s 1,912 1.253 2.387 5,425 4d ~.604 0.888 1.080 
3s 2.690 1.059 2.009 4.926 5d 2.030 0.836 1.030 
4s 3.090 1.330 3,020 8.530 6d 3.160 0.619 0.706 

2p I ~ 2 0  1.006 1.205 t .680 3f 1. i4 0.974 1.05 
3p 1.700 0.967 t .360 2.350 4[ 1.55 0.870 0.990 
4p 2.283 0.840 IA60 2.080 6] 2.03 0.770 0.880 
5p 4.210 9.659 0.93~ ~.770 

5g 1.13 0.962 a.00 
6g t ,70 0.746 0.708 

1.440 
1.590 

.560 
1.15 

t ,24 
1.38 
1.29 

t .13 
0.809 
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They show that  the NO's are all localized in the same region of space. The 2p, 3d, 4[ 
and 5g-orbitals have almost the same radial factor except for the different behav- 
:our near r = 0. From Fig. I one can understand why the ideas of B o r s  [2, 3], of 
TAYLOg and PA~R [31] and others [19, 20] to choose the "vir tual"  orbitals for a 
configuration interaction such that  the radial factors have maximum overlap 
with the is-orbital were rather successful. 

The fact that  the N 0 ' s  are localized in the same region of space can also be 
deduced from the expectation values of one-electron operators rs calculated with 
respect to the different natural configurations (Tab. 6). 

4. The role of the correlation potential 

I f  one minimizes the energy expectation value with respect to a wave function 
of the form (4) one obtains integro-differential equations for the natural orbitals. 
I f  in these equations one neglects the correlation potential C - -  which amounts to 
replacing eq. (1) by  a simple Hartree-Fock equation - -  one can give a new inter- 
pretation to this simplified scheme in the following way. One then actually mini- 
mizes the energy expectation value with respeet to a function of the form : 

(~(i ,  2) = 61 ~01(i ) ~01 (2) ~- (.O ( i :  2) (ll) 
where 

co(l, 2) = ~ c~ z~ (1) 7~* (2); (z~, zJ) = &J; (~:, z~) = 0 (:2) 
i > :  

and F: is the Hartree-Fock-orbital  of the system. 
I f  co(l, 2) were completely flexible except for (simple) orthogonality to ~1 (i) 

T: (2), this ansatz ( t t )  would be completely general. The expansion (12) of co with 
its orthogonality conditions is still general, provided tha t  ct and Z~ can be varied 
freely and independently - -  and that  co (1, 2) is strongly orthogonal to ~: (l) 
q): (2), i.e. that  

I ~* (1) ~0" (2) co(i, 2) d:: = 0. (13) 

Whereas simple orthogonality of co to q): (1) ~0: (2) does not mean a loss of generality, 
strong orthogonality means a restriction. 

If on the other hand we treat this problem formally by (Rayleigh-SchrSdinger) 
perturbation theory, we then find that the I st order correction to ~01 (I) ~: (2), i.e. 
the i st order approximation co: (I, 2) to co(l, 2) is strongly orthogonal [3g] to ~0: (1) 
~: (2). Since c: q): (l) ~: (2) + co: (:, 2) determines the energy through 3 ra order, 
non-strongly-orthogonal terms in co(i, 2) will effect the energy only to 4 TM and 
higher order. 

I f  we replace the Hartree-Fock-orbital 9r by  the strongly occupied natural  
orbital Z:, then the ansatz (ti) ,  which is now identical to (4) is rigorous even with 
a strongly orthogonal co of the form (t2). The best energy obtained with the 
general ansatz (4) will differ only by terms of 4th and higher order from tha t  
obtained with the slightly less general ansatz (t l) ,  (t2) - -  pro~4ded of course tha t  
the basis in one-electron FIilbert space is the same. 

From this one must  conclude, that  one cannot expect an appreciable improve- 
merit in the energy if one takes the correlation potential into account by "macro- 
i terat ing" the systems (i), (2), (5) until self-consistency is reached. 
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Anyway the change in energy so obtained will be small compared to the error 
due to truncation of the expansion after a fixed/-value. 

One also understands why the energy values at the end of the first macro- 
iteration cycle are so close to the best CI-results by  Wmss  [27]. 

Only for t I - ,  where the coefficient c 1 deviates more from unity than in the 
other systems and where the perturbation parameter  i/Z has its highest value m a y  
one expect an appreciable difference between ~01 and Z1 and a possible improvement 
in the energy. 

The correct solution of (t) has, however, some principal interest: 
(i) I t  has been stated [13, 15], tha t  the first natural configuration rather than 

the Hartree-Fock-function is the best one-determinant approximation to the true 
wave function - -  both in the sense of the "best density" and the "best overlap" 
criterion. I t  is therefore desirable that  the "best  approximation" could be cMcu- 
lated directly in a rather simple way and that  it could be compared with the 
Itartree-Foek-function. 

(ii) I t  is expected that  the first natural configuration gives - -  on the whole - -  
better  approximations to the expectation values of one-electron operators than 
the tIartree-Foek-function. Using DAVIDSO~'s [4] indirectly calculated first NO as 
an approximation to the true one some of these expectation values have been 
calculated previously [15]; they compare favorably with those obtained with the 
Hartree-Fock-orbitals. These results ought to be checked on natural orbitals op- 
rained in an independent way. 

(fii) The first natural  orbital is in this particular case identical to the solution 
of the "exact  self-consistent field" equations [10, 17] or to BRU~CK~R'S sel l  
consistent-field equations [19]. 

(iv) The differences between strongly occupied orbitals and tIartree-Foek- 
orbitals - -  which are small for dosed-shell states [14, 18] (and only for those) - -  
are closely connected to the oceurence of singly excited configurations with respect 
to the Hartree-Foek function in the true function, or - -  equivalently - -  to the 
occnrenee of "one-particle clusters". S~A~OGLU [29] believed so strongly in the 
irrelevance of these contributions, that  he even proposed a method to "pur i fy"  
approximate wave functions from "one-particle dusters",  which it may  contain 
"by chance". 

(v) I t  may  be possible for some applications to approximate the true (non- 
local) correlation potential by  some simplified potential, like W m ~ a ' s  [35] 
statistical one or by  a potential which is proportional to the Coulomb potential 
[12]. On this basis it should then be possible to justify semiempirical schemes in a 
more consistent way. The solutions of eq. (1) with an approximate rather than  
the true correlation potential merit therefore some attention. Results by B~RT~I~R 
and S v ~ a u  [30], show that  a Wigner type correlation potential is not satisfactory 
in this sense, essentially because it does not give the correct Z-dependence of the 
correlation energy. 

The natural orbitals Zt are solutions of the system of coupled integro-differential 
equations [11]. 

Fi Xt = ~ ~.t~ ;Z~ (14) 
k 

Fi = c~ H + ei ~ c~ K~ .  (15) 
k 
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One can reduce this system of coupled equations to pseudo-eigenvalue equations 
by  "absorbing"  the off-diagonal Lagrange-multipliers on the left-hand side using 
a procedure which is an extension of t ha t  proposed by  ROOTHAAN [23] for a special 
case of systems of the form (I4). 

Suppose tha t  we have (in an i terat ive manner) obtained those Zr which satisfy 
the system, then we obtain, keeping in mind  tha t  the ~r~ form a hermitean matr ix  : 

;.i~ = ~ i  = (Z~, FrO/r) = (Zr, F~)/k) * = (Z~, Fk~/r) (16) 

),i~ = (Z~, Grkzr); G rTc = ar~Fr + b~F~;  ark § bi~ = I .  (17) 

The ai~ and brk can be chosen arbitrarily, provided tha t  each pair sums up to 
unity.  

Let  Oi = I Xr}(Zr I be the projection operator which projects out the Zr-com- 
ponent  of  any  wave function and Pr = i - Or the complementary projection 
operator.  We then define new hermitean operators 

k(#i) 
One sees easily t ha t  

(Z~, [ f r  - Mr] )it) = l i i  &~ (19) 

if  Zr are the orbitals which one has used to construct the Pr and FL The operator 

F r = F r - M r is diagonalized by  the Zr, the Zr are consequently eigenfunetions of  

the  ~r with eigenvalues 2rr. 
Can one use this system to obtain the Zr in an i terative way  by  solving pseudo- 

eigenvalue equations ? I n  order to unders tand what  this question means let us 
suppose tha t  we had put  ar~ = t ;  br~ = 0. 

Then we would have obtained 

Gr~ = F r 

Mr = Pr Fr + F~ Pi  (20) 

~i  = F r _ M r = O r F ~ + F r p r  

and we see immediately  tha t  the Zr which we have used  to construct the Pr will 

automat ical ly  be eigenfunctions of ~r  ! I t  is therefore impossible to improve the 

guess for the  )/t by  computing the eigenfnnctions of ~,r. 
[[tle situation is, however, different if  we put  a i k r  t ;  b r ae  0. Eq. (I6) will 

then  be sati stied only if the Zi are the serf-consistent ones. Before self-consistency 
is reached, (Zk,/vrZi) will be somewhat  different from (Zr, Frz,~); and the F r of  the 
n- th  i teration will not  be diagonalized by  the Zr of the (n - 1) st iteration. Self- 
consistency is reached as soon as the two matrix-elements become equal. Whether  
the procedure converges and whether it converges towards the correct solution is 
hard to decide a priori, b u t  in practice is does. 

Knowing the role of  the ai~ and br~ we m a y  now choose them in the most  
convenient way. I n  this  par t icular  case we have 

Gr~ = ~ (~ H + c~ ~ ~ ;g;)  + b~ (4 H + ~ ~ ~. K, ) .  (~ )  
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If we choose 

we get 

Gm ~ -- Ci 
- -  oilc - -  

Ck -- ci cm -- C~ 

Gi~ - c? c~ - c~ 4 H - -- ci c~ H 

M~ = - c~ Tl  H - ci H T/; Ti - ~ c~ Oe (22) 
k(~i)  

/~i = c ~ H  + c~ ~ c~ KS + c~ T~ H +  c~ H Zi .  
k 

The correlation potential C for the first NO is defined essentially as the differ- 
ence between F 1 and the t tartree-Fock-operator 

F~F = H + K 1 

F l = c [ ( f H , § 2 4 7  ~,g ~ §  ~ c ~ K ~ §  1 H - V c ~ H T I  (23) 
k # l  

- -  c ~K e + T 1H + H T  1 = - -  ~ ce (K ~ + OeH + HOe) . 
Cl k ( i )  cl k(r 

The first sum is the "exchange pa r t "  of the correlation potential, the two other 
terms the "orthogonality par t" .  Weakly occupied orbitMs Z~ with an angular 
quantum number differen~ from that  of Z~ only contribute to the exchange part .  

From the considerations of this chapter it is evident that  the part  of the corre- 
lation potential which comes from s-type (weMdy occupied) NO's is by far the most 
important  one. Calculations in which we took into account the contributions to C 
of NO with 1 # 0 only, showed in fact that  they left the II .F.  orbital and the to ta l  
energy practically unchanged. This is why in what follows we used the s-part  of 
the correlation potential rather than the complete one. If, with this slightly simpli- 
fied correlation potential, one limits oneself to a calculation involving s-type NO's 
only, then one may  interpret this scheme as an a t tempt  to eMeu]ate the "radial 
l imit" of the energy by  a natural expansion method. The results of a pure s-calcula- 
tion can be seen from Tab. 7. The difference between the s-energy obtained by  
our scheme and what is supposed to be the s-limit is considerably reduced if one 
takes the correlation potential into account which amounts to using better  appro- 
ximations to the first NO than  the I t .F.  orbital is. The improvement is rather  
striking for H -  and it falls off rapidly with increasing Z. Self-consistency is reached 
for He after three macro-iterations, whereas for I-I- 4 to 5 (depending on the basis 
set) are necessary. One macro-iteration cycle consisted of one calculation of all 
the NO's and subsequent CI calculation. I f  in the natural expansion one replaces 
the It.l% orbital by  a better  approximation to the first natural orbital, then the 
expansion coefficient of the first natural configuration is slightly reclucecI whereas 
the coefficients of the other NO configurations increases somewhat. This can be 
seen in Tab. 7 too. 

Although the energy obtained with a natural expansion involving only s- 
orbitMs is considerably improved if one takes the correlation potential into account, 
the improvement is much less pronounced as to the energy obtained with the 
naturM expansion not limited to l = O. For He the energy remains even constant 
within the limits of errors. Only the relative contributions of orbitMs with different 
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Tab l e  7. Energies and expansion coe/]icients ]rein calculations involving the correlation potential 

Macro- i t e ra t ion  - E ( C I  w i t h  - E ( C I ,  l = 0 
l = 0 only) a n d  l r 0) -E(ls) c(ls) c(2s) 

H -  

i .51132 .52679 .48792 .97873 - . 2 0 4 4 3  
2 .51348 .48639 .97334 - . 2 2 8 6 3  
3 .51386 .48548 .97099 - . 2 3 8 4 0  
4 .5H397 .52706 .48492 .96972 - . 2 4 3 4 9  
(best va lues)  .51449 [5] .52775 [22] 

He  

I 2.87877 2.90317 2.86168 .997994 - . 0 6 2 8 5  
2 2.87891 2.86156 .997944 - . 0 6 3 6 2  
3 2.87892 2.903H8 2.86155 .99794H - . 0 6 3 6 8  
(best  va lues)  2.87902 [5] 2.90372 [22] 

1 are shifted. I f  one uses the H.]~. orbital instead of the first NO one obtains a too 
small s-contribution to the correlation energy, whereas the contributions with 
1 r 0 are somewhat too big and compensate partially the defecieney of the s- 
contribution. Only for the H -  ion the total  energy is improved, although not to 
the same extent as the s-energy (see Tab. 7). The remaining error in the to ta l  
correlation energy is reduced from 2.3% to t .7%. 

The difference between the approximate first NO and the H.F. orbital is 
shown graphically on Fig. 2. The ist NO is slightly higher and steeper near the 

~2~ is bigger and so is consequently the kinetic energy nucleus. The curvature Tfi-r2 

(which latter by  virtue of the virial theorem is for the H.F. orbital as much in 
error as the expectation value of H). Some expectation values for one electron in 

- -  ~, 7~9 

I \ \  

O'I/~XX,7~_j, IgZ 

0,75 " > ' ~ " ~  o, 3ee 
I ~ 0,0026 

l/~ ~ ~  O, O02g 
5a.u. 

Fig. 2 l~adial factors of the ]tartree-Fock orbital (- --) and the approximate first natural orbital ( ) for the He- 
ground state. (The difference being too small to be detected on correct scale, is exaggerated. The indicated num- 

bers are, however, correct). 
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the  t I , F .  orb i ta l  and  in  the  first NO respect ive ly  are given in Tab.  8. Fo r  compar i -  
son the  corresponding values ca lcula ted  [15] with  D A w n s o ~ ' s  [g] first NO of t h e  
H e  ground  sta~e are added.  The agreement  be tween our  and  DAVIDSON'S I st NO 
is not  excellent.  The corresponding expec ta t ion  values differ from those ca lcula ted  
w i th  the  t I . F .  orb i ta l  however  in the  same direction.  The difference be tween  the  
two types  of NO concerns essent ial ly  the  expec ta t ion  values of  high powers of  r, 
i.e. the  behav iour  in  regions of space far from the  nucleus on which any  energy  

Table 8. Expectation values/or one-electron operators (and the Hamiltonian) /or one-determinant 
wave/unctions compared to the exact ones 

Operator Exact [22] }IF t 't NO our NO 
from [4] 

I - [ -  

H - .52775 - .48794 - .48492 
-A 1 .52775 .48794 .50040 
(rl) -1 ( < .68818) .68582 - -  .68173 
r 1 ( > 2.5436) 2.4993 2.7426 
r~ ( > 9.5068 9.3273 12.150 
r~ ( > 45.95) 47.396 75.674 
d(rl) .1645 .1543 .t632 

H -2.90372 -2.86168 -2.86165 -2.86155 
--ZJ 1 2.90372 2.86168 2.8716 2.8632 
(rl) -1 1.6883 1.6873 1.6899 1.6869 
r 1 .9295 .92727 .9273 .9317 
r~ 1 A 935 1.1848 1.1866 1.2013 
r~ ( > 1.9621) 1.9406 1.9483 t.9920 
d(rl) 1.8t04 1.7980 1.8094 t.8096 

(The values in parenthis are estimated from the 6 th order wave functions by ScHEma and 
KnnG~T [26]). 

cr i ter ion is not  ve ry  sensitive. One should note fur ther  t h a t  in ])AVIDSON'S paper  
[6] some numer ica l  ins tabi l i t ies  occur due to a lmost  l inear  dependence  of  the  basis.  
W h e t h e r  i t  is possible to  calculate in i ndependan t  approaches  reproducible  NO's is 

stil l  an  open question.  
I t  is r a the r  as tonishing how close the  expec t a t i on  value  of  5(r) (which is propor-  

t iona l  to  the  e lect ron dens i ty  at  the  nucleus) ca lcu la ted  with  the  first na tu r a l  
conf igurat ion is to  the  exac t  value.  

F o r  t t -  there  are l~either DAVIDSON values nor  sufficient exac t  ones avai lable .  
The 6 th order  expec ta t ion  values  of powers of  r as t a k e n  from S e t ~ a ~  and  KNmHT 
[25] are p r o b a b l y  no t  ve ry  close to  the  t rue  ones, since the  cont r ibu t ions  of the  
first 6 orders in the  t /Z expans ion  have  the same order  of magn i tude  and the  
following orders  are supposed  to  behave  s imi la r ly .  

I t  should be men t ioned  t h a t  the  "o r thogona l i t y  p a r t "  of the  corre la t ion 
po ten t ia l  is as i m p o r t a n t  as the  "exchange  pa r t " .  Calculat ions in which the  fur ther  
was neglected led to  self-consistency, bu t  y i e lded  worse energy t h a n  on e ob t a ined  
wi thout  the  correlat ion potent ia l .  



On the Solution of the Two-Electron Problem. III 303 

5. Calculation of the natural orbitals 
as solutions of one single pseudo-eigenvalue equation 

I t  has been shown in chap te r  4 t h a t  the  coupled pseudo- l inear - sys tem of 
integro-different ia l  eq. (~4) can be t r ans fo rmed  into  a non-coupled sys tem of 
psendo-eigenvalue  equations.  I t  is even possible to  combine these  such t h a t  t hey  
yie ld  one single pseudo-eigenvalue equat ion,  in o ther  words, so t ha t  all the  na tu r a l  
orbi ta ls  are solutions of one and the  same effective one-par t ic le  operator .  This 
opera tor  is 

F . o  = Z + + + + 
i k 

+ cTi HO~ + c~ O~ HT~}. (24) 

It is hermitean and one sees that 

(Z~, F_~o Z~) = 2(Z~, F~ )/~), 

= ()/i F~ ;/k) + (Zt F~  Z~) + 2c~ c~ (Z~ H Z~) - (25) 

The opera to r  will be d iagonal  ff 

(Z~ Fi Z~) § (Zl F~ Z~) § 2c~ c~ (Z~ H Z~) = 0. (26) 

This is evidently the case for the correct NO's because they satisfy (i6) and (22) 

We did not as yet attempt to calculate the NO's from this effective one particle 
operator, because we think that the method we actually use is simpler and accurate 

enough, but it seems rather tempting nevertheless to use this new scheme. One 
might  s t a r t  b y  pu t t i ng  c~ = 1, ci = 0, i ~ I then  calculate  the  NO' s  of the  first 
i t e ra t ion ,  which are equal  to  the  H a r t r e e - F o c k  and  v i r tua l  I t a r t r e c - F o c k  orbi tals ,  
do a CI calculat ion (5) wi th  them,  inser t  the  c~ in the  opera to r  (24), calculate  new 
Zl and  so forth.  
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