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Natural orbitals (NO) and natural expansion coefficients for the ground states of the He
atoms and some isoelectronic ions are calculated directly as numerical self-consistent solutions
of integro-differential equations derived previously. These new applications differ from pre-
vious ones insofar as larger and more flexible sets as one-electron functions are used and as
certain simplifications are no longer made. The wave functions and energies obtained here
compete with the best configuration interaction results known so far and are obtained in an
easier and more straightforward way. Plots of the NO’s show clearly that different NO’s of the
same state are localized in the same region of space. Special attention is given to the problem
of the convergency of the natural expansion and to the role of the correlation potential, which
is defined as the difference between the effective one-electron Hamiltonians for the 15t (strongly
occupied) NO and the Hartree-Fock (HF) orbital respectively. If one takes this correlation
potential into account using an iterative procedure one can obtain better approximations to
the first NO than the HF-orbitals are. If one is only interested in the energy it is — except for
the H—-ion — irrelevant whether or not one ignores the difference between the 1t NO and the
HF-orbital.

Natiirliche Orbitale (NO) und Koeffizienten der natiirlichen Entwicklung fiir den Grund-
zustand des He-Atoms und einiger isoelektronischer Ionen werden direkt berechnet als nume-
rische, selbstkonsistente Lésungen von frither abgeleiteten Integro-Differentialgleichungen.
Diese neuen Rechnungen unterscheiden sich von fritheren zum gleichen Problem dadurch,
daB groflere und flexiblere Basissitze von Einelektronenfunktionen verwendet werden und
dal gewisse Vereinfachungen der Gleichungssysteme nicht mehr gemacht werden. Die hier
erhaltenen Wellenfunktionen und Energien kénnen mit den besten bisher bekannten Ergeb-
nissen von Konfigurationswechselwirkungs- Ansitzen wetteifern, sie sind dabei in einer ein-
facheren und systematischeren Weise zu erhalten. Graphische Darstellungen der Radialfak-
toren der NO zeigen deutlich, daB verschiedene NO’s zum gleichen Zustand im gleichen rium-
lichen Bereich lokalisiert sind. Besondere Beachtung finden das Problem der Konvergenz der
natiirlichen Entwicklung sowie die Rolle des Korrelationspotentials, das als Differenz zwi-
schen den effektiven Einelektronen-Hamilton-Operatoren fiir das erste (stark besetzte) NO
und fiir das Hartree-Fock (HF-) Orbital definiert ist. Tragt man diesem Korrelationspotential
in einer iterativen Weise Rechnung, so gelingt es, eine bessere Niherung fiir das erste NO zu
erhalten als sie das entsprechende HF-Orbital darstellt. Sofern man sich nur fiir die Energie
interessiert, so ist es — aufBler fiir das H—-Ton — unwesentlich, ob man die Verschiedenheit
zwischen erstem NO und HF-Orbital beriicksichtigt oder nicht.

Les orbitales naturelles (NO) et les coéfficients du devéloppement naturel des états fonda-
mentaux de I'atome He et de quelques ions isoéléctroniques sont calculés directement comme
solutions numériques self-consistantes d’'un system, derivé antérieurement, d’équations
integro-differentielles. Ces calculs nouveaux different des précédents par le fait qu’on se sert
maintenant de bases plus larges et plus flexibles de fonctions monoéléctroniques. En plus
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certaines simplifications ne sont plus faites. Les fonctions d’onde et les énergies obtenues ici
sont comparables aux meilleurs resultats de calculs d’interaction de configurations connus
jusqu’ici. Elles sont pourtant obtenues d’une facon plus simple et plus systématique. Les
dessing des facteurs radiaux des NO demontrent que les NO appartenant au méme état sont
localisés dans la méme région de I’espace. On s’intéresse en particulier au probléme de la con-
vergence du devéloppment naturel et au potentiel de corrélation qui est défini comme la
difference des operateurs effectifs monoéléctronique pour la premiére NO (la NO fortement
occupée) et pour l'orbitale Hartree-Fock (HF). 8i 'on tient compte de ce potentiel de corréla-
tion par un procédé iteratif on réussit a obtenir des meilleures approximations pour la premiére
NO que celle fournie par L'orbitale HF. Pourvu qu’on ne s'intéresse qu’a 1'énergie, il est —
sauf pour I’ton H~ — sans importance si I'on utilize ’orbitale HF ou une meilleure approxima-
tion pour la premiére NO.

1. Infroduction

In the first paper of this series [17], here referred to as I, integro-differential
equations have been derived which allow one to calculate the natural orbitals of
a two-electron-system without prior knowledge of the total wave function. They
have to be treated separately for (i) closed-shell type ground states, (ii) excited
singlet states of a symmetry species different from that of the ground state, and
(iii) lJowest triplet states. The equations valid for ground states have been applied
numerically to the He isoelectronic series in the second paper of this series [12],
here referred to as I1. Certain simplifications of the rather involved equations were
necessary to make a numerical solution possible.

With the approximate natural orbitals thus obtained configuration interaction
calculations were performed which, by virtue of the properties of natural orbitals,
led to secular equations of quite small dimensions. The wave functions and energies
thus obtained fulfil the variation principle, i.e. energies are upper bounds to the
true ones and the goodness of the energy is a measure of the goodness of the
wave function.

Since our previous calculations had to be done on the rather small IBM 1620
computer, it seemed worthwhile to repeat and refine them using the IBM 7040
available in Géttingen.

The refinements consisted in using larger and more flexible basis sets in terms
of which the natural orbitals are expanded, and in relaxing some of the simplifica-
tions introduced previously.

Special attention was given to the following point: The “strongly occupied””
natural orbitals — which are known to be almost identical with the Hartree-Fock
orbitals [18] (at least for the two-electron systems considered here) should be
computed from an effective one-electron equation which differs from the usual
Hartree-Fock equations in the appearance of a (non-local) correlation potential.
The latter depends on the ‘“weakly occupied’ natural orbitals, an iterative proce-
dure hence recommends itself. In II we had ignored the correlation potential and
with it the difference between Hartree-Fock orbitals and the “strongly occupied”
natural orbitals.

The specification “refined”’ in this title should not be understood in the sense
that we wanted to compete with other highly accurate treatments of the Helium-
atom [9, 22, 28]. These calculations on the Helium ground state are not an end
in itself, but they should be regarded as one step further towards a better under-
standing of more complicated systems.
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2. The computational scheme

The following sets of equations derived in part I are used to calculate the
approximate NO’s

(H+J1+O)11:/111§{1 (1)

Qi [y (H 4 K% + K1 Qg 31 = Aas x4 i 1 (2)
(k] k)

=G (3)

Here y, is the “strongly occupied” (spinfree) natural orbital, y; a “weakly occupied”
one, @; the projection operator projecting onto the subspace complementary to the
one spanned by the first (¢ — 1) natural orbitals. H is the one-electron part of the
Hamilton-operator, J? and K! are coulomb and exchange operators produced
from an electron pair in orbital y;. (1% | %1) is an exchange integral involving
orbitals y; and yz. C is the “correlation potential”, which will be discussed in
section 4. For the detailed definitions of these quantities the reader is referred to I.

The equations are solved algebraically, each NO being regarded as a linear
combination of given orthonormal one-electron functions. We start from Slater-
type-orbitals with appropriately chosen orbital exponents and construct ortho-
normal orbitals out of them by a symmetrical orthonormalisation procedure.
Those orbitals corresponding to an eigenvalue of the overlap matrix less a given
threshold value (in general < 10-%) are omitted, in order to avoid difficulties due
to approximate linear dependencies [27]. The basis integrals and the Hartree-Fock
calculations are performed in double precision arithmetic.

Contrary to what had been done in IT the (small) operators K¢ in (2) are no
longer neglected.

In the first “macro-iteration” cycle the correlation potential C is ignored. The
solution of (1) and (2) necessitate ‘‘micro-iteration” cycles; especially for the
solution of (2) one starts by putting n; = 0; having got a first approximation y;
one computes n; from (3) and so forth. Self-consistency is reached, in general
after 3 or 4 iterations.

The coefficients ¢; in the natural expansion of the spinfree wave function

w1, 2) = 2, 0 (1) 7a(2) (4)
12
are obtained finally from the secular equation
2¢; Hyp - Z cr (ik l ki)=we;. (5)
%

The lowest value for u is then an upper bound to the total energy of the ground
state.
3. Discussion of the results

We limit ourselves in this section to a discussion of the results obtained with
one single macro-iteration cycle.
Tab. 1 gives the best total energy for the Helium ground state obtained in this
scheme together with the coefficients of the natural expansion eq. (4) of the
' L
corresponding wave function. Like in IT the a; [ = (2 + 1)2 -¢;] are coefficients of
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Table 1. Energy and natural expansion coefficients a; for the best caleulation of the e ground state

-E 290322
1s  —.99622 34 0.01219 59 0.00194
25 0.06003 4d  0.00330 69  0.00076
35 0.00681 50 0.00104
45 0.00144 64  0.00033 6k 0.00098
Th 0.00025
2p  0.06005 4f  0.00426
3p  0.00956 5f  0.00143 7 0.00050
4p  0.00232 6f  0.00047

5p  0.00070

a NO-configuration, rather than of a simple NO-product. (The expansion coef-
ficients of the NO’s in terms of the basis Slater-type-orbitals are not tabulated,
but can be furnished on request.) The energy obtained here is identical with, or
sven slightly better than the best configuration interaction result known so far
[331. Our scheme is, however, simpler and more straightforward than the conven-

Table 2. Energies (compared to values from the literature) and natural expansion coefficients
for the ground state of He and the He-like ions

VA 1 2 3 4 6
—E (exact) [22, 25, 28] 0.52775  2.90372 7.27991  13.65557  32.40625
—E (best CI) [33] 0.52751  2.90320 7.27924 13.65481  32.40540
—E (this work) 0.52679  2.90317 727911  13.65464  32.40501
—F (previous NO) [12] 0.5245 2.9021 7.2777 13.6532 32.4034
—Era [5] 0.51449  2.87902 7.25249  13.62686  32.37629
— Eraa (this work) 0.51131  2.87878 7.25231 13.62669  32.37631
—Bur [24] 0.48793  2.86168 7.23641 13.61330  32.36119
—a; 1s —.97562 —.99622  —.99848  -.09918  —.99965
2s 0.18603  0.06001 0.03582 0.02553 0.01620
3s 0.01423  0.000684 0.00435 0.00321 0.00208
4s 0.00312  0.00126 0.00104 0.00077 0.00049
2p 0.11250  0.06008 0.04003 0.02993 0.01988
3p 0.01509  0.00956 0.00654 0.00436 0.00328
4p 0.00383  0.00231 0.00149 0.00115 0.00076
5p 0.00089  0.00069 0.00028 0.00031 0.00012
3d 0.01894  0.01222 0.00857 0.00656 0.00442
44 0.00507  0.00328 0.00228 0.00174 0.00115
5d 0.00169  0.00104 0.00070 0.00048 0.00032
6d 0.00068  0.00033 0.00015 0.00010
4f 0.00640  0.00428 0.00305 0.00235 0.00154
5f 0.00228  0.00144 0.00101 0.00076 0.00044
6f 0.00090  0.00047 0.00022 0.00018
59 0.00291  0.00196 0.00134 0.00104 0.00061

6y 0.00122  0.00077 0.00046 0.00023 0.00015
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tional CI method, especially since the crucial question which configuration to
choose does not arise here. The particular choice of the basis of Slater-type-
orbitals (in particular the orbital exponents) is not crucial at all, so that for a
series of calculations of the Helium-like-ions just one basis set was guessed for
each system and no refinement by variation of the basis set was tried.

These results are collected in Tab. 2. As to He the essential difference between
the results in Tab. 1 and Tab. 2 is the omission of natural orbitals with /> 4 in
the latter. Again the results in Tab. 2 are very close to the best CI results known

Table 3. Contributions of the NO-configurations to correlation energy of the ground states of He
and He-like ions

VA 1 2 3 4 6
2s .02037 01534 01445 .01408 .01376
3s .00083 .00088 .00088 .00088 .00087
4s 00010 00010 .00009 .00009 .00010
2p .01408 .01945 .02093 02162 02229
3p .00113 .00179 00195 .00203 00210
4p 00019 .00027 00029 .00030 .00030
3d .00126 .00215 .00245 .00260 .00275
4d 00026 00042 .00047 00050 .00050
5d .00006 .00010 .00010 00011 00010
4f .00028 .00050 .00058 .00062 .00066
5f .00009 .00014 .00016 00016 00015
59 00009 00017 .00019 .00021 .00021
= Beors® .03886 .04149 .04270 04334 04381
— Eeors® 03982 .04210 0435 0443 0451
e 97.7 98.6 98.2 97.7 97.2

2 Sum of the contributions.
b Exact values.
e Percentage of the exact correlation energy accounted for.

so far. Note that we obtained these energy values by a final CI calculation involving
only 17 configurations, whereas a conventional CI calculation using the same one-
electron basis would involve 88 configurations. It is interesting to compare the
“radial limits” obtained in this scheme with the very accurate ones by Davis [4].
The agreement between the two sets increases with increasing nuclear charge —
as one would expect. (The higher Z the more does the first order density matrix
approach idempotency and the more rapid ought to be the CI expansion). This
result seems to be in contradiction with the diminishing accuracy of the total
energy for increasing Z, as also has been observed in conventional CI calculations
[33].

One understands this discrepancy better if one cons ders the contributions of
the different NO-configurations to the correlation energy in Tab. 3. The definition
of these contributions is the same as in IT.

20%
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ARy = @1+ 1) (8 | i) = Y2+ 12 (43 ] i) ®)

One sees that energy contributions of NO-configurations with large 7 increase
with increasing Z, and so does the error due to truncation of the expansion at a
fixed value of /.

The remaining error of 1 to 3%, in the correlation energy (1, 29, for the best
He-calculation) is probably due to neglect of NO’s with [ > 5. Addition of just a
few l-values would, however, not improve the energy in an appreciable way as one
can see by extrapolation. This observation agrees with those of other authors
[25, 33] and comes probably [16, 27] from the fact that the wave-function for the
e ground state has a correlation cusp, as a consequence of which the wave-
function should have the following form for small 7,,:

Y(ry, Ty 11g) = o7y, 79) (1 F7ig) + - (7)

Any CIL-wave-function can, of course, be transformed to a Legendre expansion:
o &}

P(ry, 7o D1a) = o (11, 79) +k211/)k (ry, 72) Pr (cos Dyp) (8)

or alternatively to

o]

~ 2
Y(ry, 7o T19) = Yo (11, 79) +‘kZ P (11, 72) 75 9)
. T — . L L
since cos By = — 12 21‘1.'(' 2_and Py (cos ¥,) is a polynomical in cos &, and hence
12

also in 73,.

An expansion of y in terms of even powers of r, multiplied by appropriate
functions of r; and r, is convergent in the sense of the mean square approximation,
it cannot be uniformly convergent [16]. It is evident, that the rather important
term linear in 7, will need a very big number of even powers in 7, (or polynomicals
in cos 9,) to be well approximated in the mean.

2 o0 Y
12 2 2 . <
= = (r3 - 73 4 21, 75 cOS D) kzo Py Py, (cos Dy)

2

[e] % 2 2
2 7%, 12, — 1} — 13
= 71 Z PetL Py < : (10
=0 7

27y 7y

Although the cusp itself (i.e. the discontinuity of the first derivative of ¢ with
respect to 7y, at r;, = 0) has no direct influence on the energy [6], it is nevertheless
responsible for the eventually slow convergency of the CI expansion [10, 27]. A
very similar problem occurs, if one wants to expand the wave function of Hj in
terms of Slater-type-orbitals centered at the midpoint [7, 7, 8]. Again orbitals
with very high I give non-neglegible contributions and the expansion is slowly
convergent. This seems to be a very general result occuring whenever one wants to
approximate a function with a cusp as a linear combination of functions whose
first derivatives are continuous everywhere. It has been made plausible for these
two types of expansions that the energy contributions from orbitals with high 7
should be proportional to I-*[8, 27] or (! -+ 1)—4 [16]. We have therefore collected
in Tab. 4 the energy contributions E(l) of NO’s with given [ together with HE(l)-
(I + %)~ which ought to be constant for constant Z. It should be noted that our
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Table 4. Contributions to the energy B(1) of NO’s with a given I, together with (I + ) B(1)

7 - 1 2 3 4 6
EQ) 01540 02151 02317 02395 02469
(31 EQ) 07796 10889 41730 12125 12499
E@©) 00158 00267 .00302 00321 00335
(3)* E(2) 06172 40430 41797 12539 13086
E(3) 00037 00064  .00074  .00078 .00081
(Z) B(3) 05552 09604 41105 141705 12155
E(4) 00009 00017 00019 .00021 00021
(D) E(4) 03691 06971 07791 08611 08611

E(4), ie. the contribution of g-type NO’s, is probably too small, since we used

only 2 g-type basis functions.

The eventually slow convergency of the NO-expansion (like that of any CI-
expansion) should not obscure the fact that in order to get very good rather than
extremely precise energies one needs very few configurations. This can be seen

from Tab. 5, where the energy values
calculated by configuration interaction
with 1,2, ... 6 natural configurations
are tabulated, together with the corres-
ponding values taken from Davipsow [4],
who used approximative NO’s obtained
indirectly from a Kinoshita-type wave
function.

With 4 configurations one obtaing mo-
re than 909, and with 6 configurations
more than 959, of the correlation energy.
This is of practical importance for more
complicated systems. The big advantage
of the present scheme is, that it can
rather easily be generalized to systems
with more than two electrons, whereas
those methods involving direct 7,-de-
pendence of the wave function, which are

Table 5. He-ground state energies cal-
culated with minimum numbers of
NO-configurations

n —Ka Ry i ! v

1 2.861653 2.86168 0

2 2.882049 2.88223 1 48.8
3 2.897434 2.89764 0 855
4 2.899243 2.89948 2 925
5 2.900903 2.90098 1 93.5
6 2.901697 2.90170 0 952

n: Number of configurations.

I: Angular momentum quantum num-
ber of the last added NO

v: Percentage of the exact corre-
lation energy taken into account.

2 Values from Davrpsow [4].

b This work.

superior for 2-electron systems will probably resist generalisation to big systems
for quite some time. Although an accuracy of about 0.0005 a.u. ( ~ 0.01 eV
~ 100 ecm—* ~ 0.3 kecal) may seem disappointing for Helium — for which more
accurate calculations are available — one should not forget that the most reliable
values for the Be-ground-state [32, 33] — as obtained from calculations satisfying
the variation principles — are about 0.005 a.u. in error which is nearly 10 times as

much.

The radial factors of the approximate NO’s of the Helium ground state are
plotted in Fig. 1. Although, as has been stated in I, the accuracy of these NO’s
should decrease with decreasing contribution to the energy expectation value and
hence roughly with their occupation number, these plots are quite illustrative.



296 R. Amricas, W. Kvmzernice and W. A. BrweeL:

4

Fig. 1 Radial factors fxz (+) of the most important NO’s of the He-ground state.

Table 6. Bxpectation values of one-electron operators ri* with respect to different NO-configurations

(For He)

w1 1 2 3 P! 1 2 3
1s 1.687 0.927 1.185 1.940 3d 1.152 0,998 1.130 1.440
2s 1.912 1.253 2.387 5425 4d 1.604 0.888 1.080 1.590
3s 2.690 1.059  2.009 4.926 5d 2.030 0.836 1.030 1.560
4s 3.090 1.330  3.020 8.530 6d 3.160 0.619 0.706 1.15
2p 1.220 1.006 1.205 1.680 3f 144 09714 1.05 1.24
3p 1.700 0.967 1.360 2.350 4f 1.55 0.870  0.990 1.38
4p 2.283 0.840 1.160 2.080 6f 2.03 0.770  0.880 1.29
5p 4.210 0.659 0931 1.770

5g 1.13 0.962 1.00 1.13

6y 1.70 0.746 0.708 0.809
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They show that the NO’s are all localized in the same region of space. The 2p, 34, 4f
and Bg-orbitals have almost the same radial factor except for the different behav-
iour near r = 0. From Fig. 1 one can understand why the ideas of Boys [2, 3], of
Tavror and Parr [31] and others [19, 20] to choose the “virtual” orbitals for a
configuration interaction such that the radial factors have maximum overlap
with the 1s-orbital were rather successful.

The fact that the NO’s are localized in the same region of space can also be
deduced. from the expectation values of one-electron operators # calculated with
respect to the different natural configurations (Tab. 6).

4. The role of the correlation potential

If one minimizes the energy expectation value with respect to a wave function
of the form (4) one obtains integro-differential equations for the natural orbitals.
If in these equations one neglects the correlation potential ¢ — which amounts to
replacing eq. (1) by a simple Hartree-Fock equation — one can give a hew inter-
pretation to this simplified scheme in the following way. One then actually mini-
mizes the energy expectation value with respect to a function of the form:

DL, 2) =, 1(1) 91 (2) + w0 (L, 2) (11)
where
w(l, 2) = .Zlci xi (1) 2F (2); (s 2) = 0is; (@1 23) =0 (12)
>
and ¢, is the Hartree-Fock-orbital of the system.

If w(1, 2) were completely flexible except for (simple) orthogonality to ¢, (1)
iy (2), this ansatz (11) would be completely general. The expansion (12) of w with
its orthogonality conditions is still general, provided that ¢; and y; can be varied
freely and independently — and that w (1, 2) is strongly orthogonal to ¢; (1)
¢ (2), i.e. that

Foi (1) ¢ (2) (1, 2) dvy = 0. (13)

Whereas simple orthogonality of @ to ¢, (1) ¢, (2) does not mean a loss of generality,
strong orthogonality means a restriction.

If on the other hand we treat this problem formally by (Rayleigh-Schrédinger)
perturbation theory, we then find that the 15t order correction to g; (1) g, (2), i.e.
the 15t order approximation w! (1, 2) to w(1, 2)is strongly orthogonal [34] to ¢, (1)
@y (2). Since ¢; ¢, (1) @1 (2) + w! (1, 2) determines the energy through 3td order,
non-strongly-orthogonal terms in w(1, 2) will effect the energy only to 4t and
higher order.

If we replace the Hartree-Fock-orbital ¢, by the strongly occupied natural
orbital y,, then the ansatz (11), which is now identical to (4) is rigorous even with
a strongly orthogonal « of the form (12). The best energy obtained with the
general ansatz (4) will differ only by terms of 4th and higher order from that
obtained with the slightly less general ansatz (11), (12) — provided of course that
the basis in one-electron Hilbert space is the same.

From this one must conclude, that one cannot expect an appreciable improve-
ment in the energy if one takes the correlation potential into account by “maero-
iterating” the systems (1), (2), (5) until self-consistency is reached.
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Anyway the change in energy so obtained will be small compared to the error
due to truncation of the expansion after a fixed l-value.

One also understands why the energy values at the end of the first macro-
iteration cycle are so close to the best Cl-results by Werss [27].

Only for H™, where the coefficient ¢, deviates more from unity than in the
other systems and where the perturbation parameter 1/Z has its highest value may
one expect an appreciable difference between g; and y, and a possible improvement
in the energy.

The correct solution of (1) has, however, some principal interest:

(i) It has been stated [13, 15], that the first natural configuration rather than
the Hartree-Fock-function is the best one-determinant approximation to the true
wave function — both in the sense of the “best density” and the “best overlap”
criterion. It is therefore desirable that the ‘“‘best approximation” could be caleu-
lated directly in a rather simple way and that it could be compared with the
Hartree-Fock-function.

(ii) It is expected that the first natural configuration gives — on the whole —
better approximations to the expectation values of one-electron operators than
the Hartree-Fock-function. Using Davipson’s [4] indirectly calculated first NO as
an approximation to the true one some of these expectation values have been
calculated previously [75]; they compare favorably with those obtained with the
Hartree-Fock-orbitals. These results ought to be checked on natural orbitals op-
tained in an independent way.

(iii) The first natural orbital is in this particular case identical to the solution
of the “exact self-consistent fleld” equations [0, 7] or to BRUECKNER’s self-
consistent-field equations [19].

(iv) The differences between strongly occupied orbitals and Iartree-Fock-
orbitals — which are small for closed-shell states [14, 18] (and only for those) —
are closely connected to the occurence of singly excited configurations with respect
to the Hartree-Fock function in the true function, or - equivalently — to the
occurence of ‘“‘one-particle clusters”. SINaNoeLU [29] believed so strongly in the
irrelevance of these contributions, that he even proposed a method to “purify”
approximate wave functions from “one-particle clusters”, which it may contain
“by chance”.

(v) It may be possible for some applications to approximate the true (non-
local) correlation potential by some simplified potential, like WieNER's [35]
statistical one or by a potential which is proportional to the Coulomb potential
[Z2]. On this basis it should then be possible to justify semiempirical schemes in a
more consistent way. The solutions of eq. (1) with an approximate rather than
the true correlation potential merit therefore some attention. Results by BERTHIER
and STREAU [30], show that a Wigner type correlation potential is not satisfactory
in this sense, essentially because it does not give the correct Z-dependence of the
correlation energy.

The natural orbitals y; are solutions of the system of coupled integro-differential
equations [17].

Fiy; = Z_/'Lik)ac (14)

Fi=cH+¢; > op KF. (15)
)
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One can reduce this system of coupled equations to pseudo-eigenvalue equations
by “absorbing’” the off-diagonal Lagrange-multipliers on the left-hand side using
a procedure which is an extension of that proposed by Roormaan [23] for a special
case of systems of the form (14).

Suppose that we have (in an iterative manner) obtained those y; which satisfy
the system, then we obtain, keeping in mind that the A;; form a hermitean matrix:

Jae = Ay = (rws Fiee) = (ros Flyge)* = (rw F¥ya) (16)
Aik = (k> G%y); G — Bt - by R ap+bp=1. (17)
The a; and by can be chosen arbitrarily, provided that each pair sums up to

unity.

Let Oy = | 7:>{yi | be the projection operator which projects out the y;-com-
ponent of any wave function and P; =1 — 0; the complementary projection
operator. We then define new hermitean operators

Mi =3 {0 Gk + Gik Oy} . (18)
E(2D)
One sees easily that

(e M) = (o MEqr) = (g, G*0) = Aoge (1 — O4r)
(s [FE — M) y3) = Aas Oie (19)

if y; are the orbitals which one has used to construct the P; and Ft. The operator
Ft = Ft — Mt is diagonalized by the y;, the y; are consequently eigenfunctions of
the I with eigenvalues ;.

Can one use this system to obtain the y; in an iterative way by solving pseudo-
eigenvalue equations ? In order to understand what this question means let us
suppose that we had put a;; = 1; bz = 0.

Then we would have obtained

@ik — i

Mt = P Fi - i P, (20)

Fi —Fi— Mt =0, Fi - Fi Py
and we see immediately that the y; which we have used to construct the P; will
automatically be eigenfunctions of F¢! It is therefore impossible to improve the
guess for the x; by computing the eigenfunctions of Fv.

The sitvation is, however, different if we put a; - 1; by 5 0. Eqg. (16) will
then be satisfied only if the y; are the self-consistent ones. Before self-consistency
is reached, (yz, Fiy;) will be somewhat different from (y;, Fiyy); and the Ft of the
n-th iteration will not be diagonalized by the y; of the (n — 1)st iteration. Self-
consistency is reached as soon as the two matrix-elements become equal. Whether
the procedure converges and whether it converges towards the correct solution is
hard to decide a priori, but in practice is does.

Knowing the role of the a;; and b;; we may now choose them in the most
convenient way. In this particular case we have

G = ap (¢ H + ¢ D, ¢ 1K9) + byg (6 H + o S ¢; Ky . (21)
j j
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If we choose

Cr - Ci

Aig = P bix = o o
we get
P ulal 2 SR
Cp — C;
Mi=—¢TyH—c; HTy; Ti= 3 ox O (22)

k(#7)
I =C%H+CiZC]CK}C—}—CiTiH—]—GiHTi.
k

The correlation potential ¢ for the first NO is defined essentially as the differ-
ence between F; and the Hartree-Fock-operator

Fagp=H+ K*
Fi=3(Far+O)=cH+EK +¢c; D cpKb o, Ty H+c HT,  (23)
FAl
1
0=m< s ckK’ﬂ+T1H+HT1>:—1— S o (KF + Ol + HOy) .
C1 \g(ED) 01 B(Fn

The first sum is the “exchange part” of the correlation potential, the two other
terms the ‘“‘orthogonality part”. Weakly occupied orbitals y; with an angular
quantum number different from that of 4, only contribute to the exchange part.

From the considerations of this chapter it is evident that the part of the corre-
lation potential which comes from s-type (weakly occupied) NO’s is by far the most
important one. Caleulations in which we took into account the contributions to ¢
of NO with I+ 0 only, showed in fact that they left the HL.F. orbital and the total
energy practically unchanged. This is why in what follows we used the s-part of
the correlation potential rather than the complete one. If, with this slightly simpli-
fied correlation potential, one limits oneself to a calculation involving s-type NO’s
only, then one may interpret this scheme as an attempt to calculate the “radial
limit” of the energy by a natural expansion method. The results of a pure s-calcula-
tion can be seen from Tab. 7. The difference between the s-energy obtained by
our scheme and what is supposed to be the s-limit is considerably reduced if one
takes the correlation potential into account which amounts to using better appro-
ximations to the firss NO than the ILF. orbital is. The improvement is rather
striking for H™ and it falls off rapidly with increasing Z. Self-consistency is reached
for He after three macro-iterations, whereas for H™ 4 to 5 (depending on the basis
set) are necessary. One macro-iteration cycle consisted of one calculation of all
the NO’s and subsequent CI calculation. If in the natural expansion one replaces
the H.F. orbital by a better approximation to the first natural orbital, then the
expansion coefficient of the first natural configuration is slightly reduced whereas
the coefficients of the other NO configurations increases somewhat. This can be
seen in Tab. 7 too.

Although the energy obtained with a natural expansion involving only s-
orbitals is considerably improved if one takes the correlation potential into account,
the improvement is much less pronounced as to the energy obtained with the
natural expansion not limited to I = 0. For He the energy remains even constant
within the limits of errors. Only the relative contributions of orbitals with different
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Table 7. Energies and expansion coefficients from calculations involving the correlation potential

Macro-iteration —E(CT with ~ECLI=0

1 = 0 only) and I = 0) —E(1s) ¢(1s) c(28)
H-
1 51132 52679 48792 97873 —.20443
2 .51348 .48639 97334 —.22863
3 .51386 48548 .97099 —.23840
4 .51397 .52706 48492 .96972 —.24349
(best values) .51449 [5] 52775 [22]
He
1 2.87877 2.90317 2.86168 997994 —.06285
2 2.87891 2.86156 997944  —.06362
3 2.87892 2.90318 2.86155 997941 —.06368
(best values) 2.87902 [5] 2.90372 [22]

{ are shifted. If one uses the H.F. orbital instead of the first NO one obtains a too
small s-contribution to the correlation energy, whereas the contributions with
[+ 0 are somewhat too big and compensate partially the defeciency of the s-
contribution. Only for the H™ ion the total energy is improved, although not to
the same extent as the s-energy (see Tab. 7). The remaining error in the total
correlation energy is reduced from 2.3%, to 1.7%,.

The difference between the approximate first NO and the H.F. orbital is
shown graphically on Fig. 2. The 18t NO is slightly higher and steeper near the
nucleus. The curvature ZZ;;U
(which latter by virtue of the virjal theorem is for the H.F. orbital as much in
error as the expectation value of H). Some expectation values for one electron in

is bigger and so is consequently the kinetic energy

% 769

43,0026
08,0024

5 a.u.
Fig. 2 Radial factors of the Hartree-Fock orbital (- --) and the approximate first natural orbital (—) for the He-

ground state. (The difference being too small to be detected on correct scale, is exaggerated. The indicated num-
bers are, however, correct).
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the IL.F. orbital and in the first NO respectively are given in Tab. 8. For compari-
son the corresponding values calculated [15] with Davinson’s [4] first NO of the
He ground state are added. The agreement between our and Davipson’s 15t NO
is not excellent. The corresponding expectation values differ from those calculated
with the H.F. orbital however in the same direction. The difference between the
two types of NO concerns essentially the expectation values of high powers of 7,
i.e. the behaviour in regions of space far from the nucleus on which any energy

Table 8. Expectation values for one-eleciron operators (and the Hamiltonian) for one-determinant
wave functions compared to the exact ones

Operator Exact [22] HF 1st NO our NO
from. [4]
H.._
o —.52775 —.487%4 —.48492
—A 52775 48794 .50040
(r)1 (< .68818) 68582 — 68173
r (> 2.5436) 2.4993 2.7426
72 (> 9.5068 9.3273 12150
7 (> 45.95) 47.396 75.674
8(r) 1645 1543 1632
He
-4 ~2.90372 —2.86168 —2.86165 —2.86155
A4 2.90372 2.86168 2.8716 2.8632
(r) 1.6883 1.6873 1.6899 1.6869
7y 9295 92727 9273 9317
73 1.1935 1.1848 1.1866 1.2013
73 (> 1.9621) 1.9406 1.9483 1.9920
d(ry) 1.8104 1.7980 1.8094 1.8096

(The values in parenthis are estimated from the 6% order wave functions by ScHERR and
KxteuT [26]).

criterion is not very sensitive. One should note further that in Davipson’s paper
[4] some numerical instabilities occur due to almost linear dependence of the basis.
Whether it is possible to calculate in independant approaches reproducible NO’s is
still an open question.

1t is rather astonishing how close the expectation value of d(r) (which is propor-
tional to the electron density at the nucleus) calculated with the first natural
configuration is to the exact value.

For H™ there are neither Davipsox values nor sufficient exact ones available.
The 6th order expectation values of powers of 7 as taken from ScaErr and KNIGHT
[25] are probably not very close to the true ones, since the contributions of the
first 6 orders in the 1/Z expansion have the same order of magnitude and the
following orders are supposed to behave similarly.

It should be mentioned that the “orthogonality part” of the correlation
potential is as important as the “exchange part”. Calculations in which the further
was neglected led to self-consistency, but yielded worse energy than one obtained
without the correlation potential.
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5. Calculation of the natural orbitals
as solutions of one single pseudo-eigenvalue equation
It has been shown in chapter 4 that the coupled pseudo-linear-system of
integro-differential eq. (14) can be transformed into a non-coupled system of
pseudo-eigenvalue equations. It is even possible to combine these such that they
yield one single pseudo-eigenvalue equation, in other words, so that all the natural
orbitals are solutions of one and the same effective one-particle operator. This
operator is
Fxo= 2 {c} HO; + ¢ O:H + ¢; 05 > e KF + ¢; 3 oK% O +
i k P
+¢Ty HOp + ¢; Oy HT@} . (24)
It is hermitean and one sees that
(> Fxo 26) = 2010, F' ya)
(> Fxo i) = (e Frpe) -+ (e FE ) + on (e T H yw) + ¢ (e HTy o)
= (ya I yx) + (o F¥ yx) + 2¢5 o (s H xx) - (25)
The operator will be diagonal if

(e B o) + (s Fre o) + 2¢5 0 (o H ) = 0 . (26)
This is evidently the case for the correct NO’s because they satisfy (16) and (22)
We did not as yet attempt to calculate the NO’s from this effective one particle
operator, because we think that the method we actually use is simpler and accurate
enough, but it seems rather tempting nevertheless to use this new scheme. One
might start by putting ¢; = 1, ¢; = 0, i 1 then calculate the NO’s of the first
iteration, which are equal to the Hartree-Fock and virtual Hartree-Fock orbitals,
do a CI calculation (5) with them, insert the ¢; in the operator (24), calculate new
% and so forth.
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